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Performance of Gas Mapping LiDAR™ for Quantification of Very High Methane Emission Rates 
 
1. Abstract 
 
We present single-blind test results for quantification of very high emission rates using Bridger 
Photonics, Inc.’s (Bridger’s) airborne Gas Mapping LiDAR™ (GML) technology.  Flow meter 
measurements from a controlled release are compared with emission rate quantification 
estimates from GML to determine Bridger’s measurement bias and uncertainty. Wind data, a 
useful external input to Bridger’s computation, is provided by four different sources for 
comparison: two on-site anemometers and two model based remote wind services.  The fitted 
slope errors for the GML-estimated emission rates versus the ground-measured emission rates 
varied from 3% to 13%, for the different sources of wind data, compared to the ideal 1:1 parity 
ratio.  
 
The value and importance of measuring multiple emitters (or a single emitter multiple times) to 
reduce the measurement uncertainty for aggregate emissions inventories is also described. The 
aggregate emissions based on GML measurements were within 4% of that based on ground 
measurements for all wind data and for the full 70-emitter data set.  However, counter-balancing 
emission-rate-dependent biases may make these aggregate emissions errors artificially low as 
described herein. 
 
2. Introduction and Motivation 
 
Remotely quantifying the emissions rate of methane gas (the primary constituent in natural gas) 
is becoming increasingly important across the oil and gas industry.  Accurate regional/basin-scale 
aggregate emissions rates are critical as inputs to predictive climate models and for grounding 
federal and state/provincial policy regarding emissions reduction targets and regulations.  Many 
companies in the oil and gas industry have set voluntary methane emissions reduction goals and 
some have even tied executive compensation to the achievement of those goals.  European 
natural gas customers are providing strong incentives to ensure that the methane they purchase 
has resulted in minimal emissions throughout the entire natural gas supply chain (i.e. production, 
transmission, and distribution).  The United Nations Environmental Programme’s (UNEP’s) Oil 
and Gas Methane Partnership (OGMP) 2.01, which is being adopted broadly across the industry, 
includes quantification requirements moving forward. The US Environmental Protection Agency 
(EPA) is considering an alternate means of emissions limitation (AMEL) for regulatory2 
compliance that includes prioritization of methane leak repairs based on (coarse) emissions rate 
tiers to optimize emissions reduction.  All of these applications require quantification of emission 
rates. 
 
To address these emerging applications, Bridger set out to assess the methane emissions rate 
quantification capabilities of GML technology, specifically for very high emissions rates.  The 
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ability of GML to detect and quantify emission rates has been validated many times, including a 
fully blind assessment by Carleton University, during which Bridger was unaware the testing was 
being performed3.  During the Carleton testing, Matt Johnson’s group found GML to exhibit an 
aggregate measurement bias of -8% and single-measurement standard deviation (1-) of ±31% 
(using on-site wind data) relative to the ground truth emission rates measured with flow meters.  
The Johnson group testing was performed under challenging conditions including small emission 
rates near and below the detection limit of GML (2.8 kg CH4/hr with 95% probability of detection 
for the production sector).  Alternatively, studies at the high end of the range of emissions rates 
(>30 kg CH4/hr) have been challenging to perform because the controlled high emissions rates 
can cause the released methane gas to condense into liquid form or even freeze the controlled 
emissions components (piping, valves, flow meters, etc.), which can corrupt the measurements.   
 
Since a single very large emitter may constitute a reasonable fraction of an aggregate emission 
or inventory, it is important that the accuracy with which very high emission rates can be 
quantified by GML is well understood.  A large quantification error on such a large emitter can 
lead to relatively high uncertainty in the aggregate inventory and thus must be considered in 
developing a plan for achieving the emissions reduction goal for a particular application.  For 
smaller emitters, which tend to be more numerous, the random measurement errors tend to 
average out and thus drive down the uncertainty in the aggregate inventory.  To get similar 
averaging for statistically infrequent very large emitters it may be desired to repeat the 
measurement multiple times to reduce the random error and thereby approach the 
measurement bias. 
 
To ensure that emissions inventories are accurate, and to enable the development of effective 
emissions reduction plans, this white paper is devoted to the first assessment of GML’s 
quantification capabilities for very high emissions rates. 
 
3. Brief Technology Background 
 
Bridger’s GML technology uses the absorption of laser light to detect, localize, and quantify 
methane gas.  GML scans an eye-safe laser beam across the ground from an aircraft to produce 
path-integrated concentration imagery.  Bridger also acquires digital aerial photography and 
topographical LiDAR, which they use to attribute the emissions to particular equipment and to 
accurately determine the distance between the sensor and the ground for their internal 
processing.  All of the acquired data is geo-registered to a common global coordinate system.  
Bridger uses proprietary processing techniques that incorporate lateral and vertical gas 
concentration profiles with vertically varying wind speed profiles and other parameters for 
emission rate quantification.  Bridger’s stated detection sensitivity depends on the industry 
sector, but ranges from 0.47 kg CH4/hr (25 scfh) with a 95% probability of detection (PoD) in the 
distribution sector for utility companies (assuming unobstructed view), to 2.8 kg CH4/hr (150 
scfh) with a 95% PoD for the production sector.  Bridger’s second-generation sensor, which is in 
prototype stage at the time of this white paper release, will further improve upon the detection 
sensitivity capabilities of GML when needed. 
 
4. Description of Experiment and Setup 
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To overcome the challenges of gas condensation during controlled releases with high emission 
rates (> 30 kg CH4/hr), Bridger leased a commercial mobile trailer equipped with 900 kg of high-
pressure methane gas (95% purity) as shown in Figure 1(left and center).  This equipment is 
typically used for temporarily supplementing natural gas distribution supplies in municipalities 
when needed (e.g. pipeline repair).  For the current project, the cylinders were configured to 
allow flow rates of up to 565 kg CH4/hr (30,000 scfh).  The flow rate was controlled by adjusting 
a master valve that received the output from the combined cylinders.  A heat exchanger was 
included as part of the commercial set up to prevent gas condensation that normally complicates 
tests at high rates.  The combined flow rate was measured using an integrated flow meter (Sierra 
Instruments QuadraTherm 640i) which has a manufacturer-stated uncertainty4 of ±0.75% of the 
reading with an additional ±0.5% of the full scale reading at lower rates (less than half the full 
rate).  This corresponds to ±4-9 kg CH4/hr (~200-450 scfh) for the rates in this experiment.  To 
avoid the large uncertainty this leads to at lower rates, Bridger focused this study on leak rates 
>100 kg CH4/hr limiting the potential ground measurement error to <10%. GML performance 
verification at lower rates would require a mass flow controller optimized for that range and has 
been already validated elsewhere.   
 

 

Figure 1.  Left and center:  Trailer equipped with a bank of high-pressure methane tanks for high emissions rates 
(>30 kg CH4/hr) with integrate heat exchangers to prevent freezing of the equipment.  Center and right:  Tubing 
and vertical emission structure. 

During the controlled release testing, an aircraft equipped with a GML sensor flew in figure-eight 
patterns over the emission point and data was acquired using Bridger’s standard operational 
protocol.  Bridger used their standard flight operational conditions for the production sector 
which include a single-engine fixed-wing aircraft with a flight altitude between 150 meters and 
230 meters above ground level (AGL) and a typical flight speed of 160 km/hr (100 mph).  On the 
ground, tubing was used to route the gas from the trailer to the emission point located 3.5 meters 
vertically off the ground, as shown in Figure 1(center and right).  Bridger personnel used the 
master valve to control the emission rate for four different nominal flow rates between 
94 kg CH4/hr (5,000 scfh) and 566 kg CH4/hr (30,000 scfh).  These emission rates are far greater 
than Bridger’s minimum detection sensitivity (see above).  Fifteen to twenty flight passes were 
performed for each emission rate for a total of 70 measurements.  Experiments took place 
outside of Midland, Texas during two consecutive days in March 2021.  All releases were properly 
permitted. 
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The local wind speed can be an important input to Bridger’s emission rate quantification.  To 
investigate the reliance on this input the wind speed was determined using several techniques 
during the experiment: two ground-based anemometers at the measurement site and data from 
two model-based remote wind services.  At the emission site Bridger deployed a standard cup 
anemometer5 and an ultrasonic anemometer6 each recording wind speed and direction every 
second, 3 m off the ground.  Additionally, Bridger accessed hourly interpolated wind speed data 
from Meteoblue7 and NOAA HRRR8. The wind speed measured by the ultrasonic instrument 
varied during the testing between 5 m/s and 11 m/s, which is typical for the region.   
 
The GML sensor data was processed using Bridger’s standard operating procedures with each 
source of wind data to estimate each emission rate without knowledge of the actual controlled 
emission rates on the ground (i.e. single-blind).  No additional adjustments or calibrations were 
made to the GML sensor beyond Bridger’s standard calibration and quality assurance procedures 
performed before testing.  In practice, Bridger uses its acquired data and computation algorithms 
to actively determine the height of the emitter and the spatial profile of the gas plume to 
minimize uncertainty in applying vertical wind profiles. For this work, the emitter height was 
known, which can reduce a source of uncertainty for the determination of emission rate, though 
Bridger’s algorithms were used to compute the vertical distribution of the gas plume 
independently using their standard procedure. 
 
While Bridger’s processing is designed to handle multiple emission sources, background 
emissions, and regions of turbulent flow, none of these complications were present here. The 
emission rates were far above GML’s detection threshold, there was only a single emitter with 
no interfering emissions, and the emitter was located away from obstructions.  Nevertheless, 
these measurement conditions are routinely met throughout the Permian basin in Bridger’s 
experience. 
 
5. Description of Results 
Results of the blind controlled release testing are shown in Figure 2 when using the MeteoBlue 
(top left), NOAA HRRR (top right), wind cup (bottom left), and ultrasonic (bottom right) wind data 
in the processing for determining emission rates from identical sets of GML data.  Each light blue 
data point in the figures represents a single GML-measured emission rate estimate for a flight 
pass, while the darker blue diamonds represent the average value for each nominal emission 
rate, both shown as functions of ground-measured emission rate (assumed “truth”).  Horizontal 
error bars denote errors from the mass flow controller (see above).  The uncertainty of the wind 
measurements (not available for MeteoBlue or HRRR) are used to estimate the uncertainty of 
each individual measurement, while the averaged data uncertainty (vertical dark blue bars) is the 
standard deviation applied to the mean9 (𝜎 √𝑛)⁄  assuming stochastic noise. A linear fit to the 
complete single-measurement dataset (red line) shows strong agreement with the 1:1 parity line 
(green line).  Deviations between the red fit line and the green parity line can represent the bias 
of the experiment as a function of the emission rate size.  The bias is likely dominated by the 
uncertainty of the ground measurement at lower rates and the GML’s systematic bias at higher 
rates.  



© Copyright Bridger Photonics, Inc.  White Paper #210607, 07 June, 2021 

 
Figure 2.  GML-measured emission rate versus ground-measured emission rate for four different sources of wind 
data:  MeteoBlue (top left), NOAA HRRR (top right), cup wind meter (bottom left), and ultrasonic anemometer 
(bottom right).  The green line represents the “ideal” 1:1 ratio and the red line is a linear fit to the data.  Horizontal 
error bars denote errors specified for the flow meter.  Vertical error bars on light blue data points are from the 
wind uncertainty and on the dark blue points are standard deviations of the mean. 

Statistics from the fit line are shown in Figure 3.  The high R2 parameters (~0.9) for all data sets 
indicate high correlation between the fits and the measurements.  All fit lines show slopes near 
the ideal value of 1, demonstrating GML’s ability to accurately track methane leaks across a wide 
range of emissions rates with low levels of systematic bias.  The fits give offsets of 8 to 
29 kg CH4/hr, which, compared to the measured rates of 100’s of kg CH4/hr, are relatively small, 
and are anticipated to be reduced with data at lower emission rates.  However, due to the large 
errors at low flow rates of the flow meter used in this experiment and the focus on larger 
emissions rates, this offset is not critically measured here.  The GML results compare favorably 
to the results from a recent study of a passive methane sensing system (solar infrared 
spectrometer)10 which reports fitted slopes in the 0.88-1.45 range and R2 values of 0.67-0.84.  
Solar infrared spectrometers are challenged with a variety of random and systematic effects that 
depend on environmental variables and conditions of the measurement scene which make it 
difficult to significantly and reliably reduce that technology’s measurement bias11–13.  GML’s 
active (i.e. laser-based) methane measurement technique, on the other hand, has low sensitivity 
to environmental variables and measurement scene conditions, which allows for low bias and 
low-uncertainty measurements. 
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Figure 3.  Summary of linear fits to measured data sets computed from the four different sources of wind data, 
including the least squares coefficient of determination (R2), fitted slope, y-offset, and single measurement 1-σ 
deviation (standard deviation). 

Figure 3 also highlights the quality of the individually measured data.  The single measurement 
uncertainty is in the 15-21% range (1-σ standard deviation), depending on the wind source, but 
these uncertainties consistently average to a mean value that approaches the measurement bias.  
The fractional spread in results can be seen below in Figure 4 which plots the percent error 
between Bridger’s GML results and the ground “truth.”  The deviations of the individual data 
points (light blue diamonds) average down to results (dark blue diamonds) mostly within +/- 10% 
of the ground measured rate.  Additionally, the uncertainty on these averaged results (dark blue 
vertical error bars) is typically within several percent due to increased measurements on the 
standard deviation of the mean (𝜎 √𝑛)⁄ .  This illustrates that with only a relatively few 
independent measurements the uncertainty of an aggregate inventory can be reduced well 
below the single measurement uncertainty listed in Figure 3. 
 
Figure 4 also includes the uncertainty of the ground-measured emission rate (green shaded 
region).  This uncertainty in the “truth” grows unacceptably large at lower emission rates (e.g. 
+/- 20% uncertainty in the “truth” for leak rates around 30 kg CH4/hr) which is the reason smaller 
emission values were not studied in this experiment.  Even at the lowest rate measured here the 
uncertainty in the ground measurement is nearly 10%.  However, the fact that the bounds on 
most of the averaged data points (dark blue diamonds) include the “truth” uncertainty region is 
indicative of Bridger’s ability to consistently measure large methane leaks with biases of under 
10 percent. 
 

MeteoBlue HRRR Wind Cup Ultrasonic

R2 0.87 0.89 0.89 0.92
Fit Slope 0.95 ± 0.04 0.97 ± 0.03 0.87 ± 0.02 0.92 ± 0.03
Fit Offset (kg/hr) 8 ± 13 20 ± 10 21 ± 6 29 ± 10
1-σ 21% 16% 15% 15%
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Figure 4.  GML-measured emission rate deviation (in percent) from ground-measured emission rate for four 
different sources of wind data:  MeteoBlue (top left), NOAA HRRR (top right), cup wind meter (bottom left), and 
ultrasonic anemometer (bottom right). The green shading represents the “ideal” zero deviation with the addition 
of the flow meter uncertainty which demonstrate the growing error at low emission rates.  Vertical error bars on 
light blue (individual measurement) data points are from the wind uncertainty and on the dark blue (averaged) 
data points are standard deviations of the mean.  

Under these experimental conditions and geographic region, the modeled and on-site wind data 
both yield highly accurate results, which indicates that the use of modeled wind data is an 
acceptable alternative for quantifying emission rates when on-site wind data is unavailable.  In 
other geographic regions with less favorable topographic or environmental conditions, results 
from anemometer and model-based remote wind service data may not agree as closely.  
 
6. Example Calculation of Aggregate Inventory Bias 
 
The full data set measured here (70 measurements) can be used to simulate an inventory of 
independent emitters in order to demonstrate how the measurement uncertainty of an 
aggregate inventory is reduced by measuring more emitters. 
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Figure 5.  Example of averaging effect on an aggregate inventory.  Data from the experiment (using the HRRR wind 
data) is randomly combined into inventories of different sizes and the error of their GML measured cumulative 
emission is plotted against number of emitters (blue lines).  Green lines denote the 𝟏 √𝒏⁄  reduction of the 
aggregate uncertainty from the measured single emitter uncertainty (from Figure 3).  This specific dataset results 
in a final bias of <4% from the ground measurements as seen in the convergence of the traces on the right. 
 
Figure 5 shows the percent error of the aggregated emission rate (i.e. the percent error of the 
simulated inventory) as a function of the number of emitters included in the aggregate, up to the 
total of all 70 emitters.  Each blue line represents a different order (randomly selected) in which 
the emitters are “measured” for the inventory (using the HRRR wind data).  When including only 
a few emitters in the aggregate (left side of plot) the spread in the aggregate error is 
comparatively large, but as more emitters are added in their cumulative uncertainty is greatly 
reduced. With a large number of measurements (right side of plot) the traces converge to a non-
zero value, which is the measurement bias of this inventory (<4% for the HRRR wind data shown 
here).  All blue traces are identical at N=70 emitters because all the measured data is included. 
 
The green traces in Figure 5 are ±𝜎 √𝑛⁄  (where σ is the single measurement uncertainty from 
Figure 3) offset by the bias.  The blue traces are well bounded by these lines indicating that each 
individual measurement has gaussian-distributed noise with its well-understood averaging 
behavior.  It is useful to note that the largest reduction in aggregate uncertainty occurs in the 
first ~10 measurements, demonstrating that an inventory consisting of a relatively small number 
of emissions may achieve sufficient accuracy for a given application.  Additional measurements 
beyond ~10 may provide only marginal reductions in the uncertainty.   
 
The results in Figure 5 are meant to be illustrative of the benefits of aggregating an inventory.  
The <4% aggregate bias presented here, which was observed for all sources of wind data, may be 
favorably impacted by several factors.  First, the bias of an individual GML measurement is a 
function of the emission rate.  Figure 4 shows that measurements of lower emission rates are 
typically skewed positive (generally positively biased) which is very likely due to errors in the flow 
meter.  Whereas measurements of higher emission rates are typically skewed slightly negative, 
which may be due to bias in the GML measurement.  Since the measured emission rates are fairly 
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uniformly distributed, these two systematic effects effectively balance one another, which may 
result in an unrealistically small aggregate bias.  A different distribution of emission rates may 
therefore result in a different bias on the aggregate. Additionally, without the counterbalancing 
bias of the flow meter, the less than unity measurement slopes may add up to larger aggregate 
biases.  Second, Bridger has not yet comprehensively studied if the GML measurement bias may 
vary between factory calibrations. This could compound systematic errors from different 
measurements and reduce the ability to average down the aggregate measurement uncertainty.  
Finally, biases in the input wind data will translate into biases in the GML measurements.  The 
Permian basin, being largely flat, unobstructed, and with a relatively dense network or weather 
station, has fairly reliable wind data from model-based remote wind services (such as MeteoBlue 
and HRRR).  This can be more complicated in other regions leading to unknown systematics in 
the determination of emission rates when using remote wind service data.   
 
Despite these caveats the GML emissions rate quantification results shown here indicate strong 
potential to accurately quantify large leak rates under these realistic measurement conditions.  
By measuring many emitters in an inventory, the measurement uncertainty can be reduced well 
below the single-measurement uncertainty. 
 
7. Conclusions 
 
This white paper presented blind emission rate quantification testing of Bridger’s GML 
technology.  Data analyzed using Bridger’s standard algorithms showed strong agreement with 
the ground-measured leak rates using both locally-measured and regionally-interpolated wind 
data inputs.  The deviations of the fitted slopes from the ideal 1:1 slope ranged from 3% to 13% 
depending on the wind data source.  Moreover, the aggregate measurement bias for large 
emission rates (100-550 kg CH4/hr) was shown to be single digit percent.  This result highlights 
the ability to significantly reduce uncertainty, and approach the measurement bias, in aggregate 
emissions measurements (e.g. inventories) by measuring multiple emitters. 
 
Acknowledgments 
 
Bridger gratefully acknowledges the suggestion and information provided by Dr. Adam Brandt 
and Dr. Evan Sherwin, both of Stanford University, regarding the high emission trailer setup 
used for this work. Also, Bridger has learned and gratefully acknowledges that the high 
emissions trailer setup was originally assembled and made possible by previous efforts funded 
by Stanford University and the Environmental Defense Fund.  The engineering work that went 
into the trailer setup was critical to performing Bridger’s study. 
 
Contact:  Info at 406.522.3766 or info@bridgerphotonics.com 
 
 
Bibliography 
1. https://www.ccacoalition.org/en/resources/oil-and-gas-methane-partnership-ogmp-20-

framework. 
2. EPA 40 CFR Part 60, https://www.govinfo.gov/content/pkg/FR-2016-06-03/pdf/2016-

11971.pdf, accessed 5/26/2021. 
3. Johnson, M. R., Tyner, D. R. & Szekeres, A. J. Blinded evaluation of airborne methane 



© Copyright Bridger Photonics, Inc.  White Paper #210607, 07 June, 2021 

source detection using Bridger Photonics LiDAR. Remote Sens. Environ. 259, 112418 
(2021). 

4. https://www.sierrainstruments.com/products/quadratherm/640i.html. 
5. https://www.onsetcomp.com/products/sensors/s-wcf-m003. 
6. https://lcjcapteurs.com/en/girouette-anemometres-capteur-vent/sa-dzp-2/. 
7. https://www.meteoblue.com/. 
8. https://rapidrefresh.noaa.gov/hrrr/. 
9. NIST/SEMATECH e-Handbook of Statistical Methods, 

http://www.itl.nist.gov/div898/handbook/, accesssed 5/26/2021. 
10. Sherwin, E. D., Chen, Y., Ravikumar, A. P. & Brandt, A. R. Single-blind test of airplane-

based hyperspectral methane detection via controlled releases. Elementa 9, (2021). 
11. Ayasse, A. K. et al. Evaluating the effects of surface properties on methane retrievals 

using a synthetic airborne visible/infrared imaging spectrometer next generation (AVIRIS-
NG) image. Remote Sens. Environ. 215, 386–397 (2018). 

12. Thorpe, A. K. et al. Mapping methane concentrations from a controlled release 
experiment using the next generation airborne visible/infrared imaging spectrometer 
(AVIRIS-NG). Remote Sens. Environ. 179, 104–115 (2016). 

13. Minwei, Z., Leifer, I. & Hu, C. Challenges in Methane Column Retrievals from AVIRIS-NG 
Imagery over Spectrally Cluttered Surfaces: A Sensitivity Analysis. Remonte Sens. 9, 1–21 
(2017). 

 


